Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccines (Basel) ; 10(9)2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2010338

ABSTRACT

COVID-19 mRNA vaccines protect against severe disease and hospitalization. Neutralizing antibodies (NAbs) are a first-line defense mechanism, but protective NAb responses are variable. Currently, NAb testing is not widely available. This study employed a lateral flow assay for monitoring NAb levels postvaccination and natural infection, using a finger-stick drop of blood. We report longitudinal NAb data from BNT162b2 (Pfizer) and mRNA-1273 (Moderna) recipients after second and third doses. Results demonstrate a third dose of mRNA vaccine elicits higher and more durable NAb titers than the second dose, independent of manufacturer, sex, and age. Our analyses also revealed that vaccinated individuals could be categorized as strong, moderate, and poorly neutralizing responders. After the second dose, 34% of subjects were classified as strong responders, compared to 79% after the third dose. The final months of this study coincided with the emergence of the SARS-CoV-2 Omicron variant and symptomatic breakthrough infections within our study population. Lastly, we show that NAb levels sufficient for protection from symptomatic infection with early SARS-CoV-2 variants were not protective against Omicron infection and disease. This work highlights the need for accessible vaccine response monitoring for use in healthcare, such that individuals, particularly those in vulnerable populations, can make informed vaccination decisions.

2.
Commun Med (Lond) ; 2: 85, 2022.
Article in English | MEDLINE | ID: covidwho-1931498

ABSTRACT

Background: While evaluating COVID-19 vaccine responses using a rapid neutralizing antibody (NAb) test, we observed that 25% of mRNA vaccine recipients did not neutralize >50%. We termed this group "vaccine poor responders" (VPRs). The objective of this study was to determine if individuals who neutralized <50% would remain VPRs, or if a third dose would elicit high levels of NAbs. Methods: 269 healthy individuals ranging in age from 19 to 80 (Average age = 51; 165 females and 104 males) who received either BNT162b2 (Pfizer) or mRNA-1273 (Moderna) vaccines were evaluated. NAb levels were measured: (i) 2-4 weeks after a second vaccine dose, (ii) 2-4 months after the second dose, (iii) within 1-2 weeks prior to a third dose and (iv) 2-4 weeks after a third mRNA vaccine dose. Results: Analysis of vaccine recipients reveals that 25% did not neutralize above 50% (Median neutralization = 21%, titers <1:80) within a month after their second dose. Twenty-three of these VPRs obtained a third dose of either BNT162b2 or mRNA-1273 vaccine 1-8 months (average = 5 months) after their second dose. Within a month after their third dose, VPRs show an average 5.4-fold increase in NAb levels (range: 46-99%). Conclusions: The results suggest that VPRs are not permanently poor responders; they can generate high NAb levels with an additional vaccine dose. Although it is not known what levels of NAbs protect from infection or disease, those in high-risk professions may wish to keep peripheral NAb levels high, limiting infection, and potential transmission.

3.
J Clin Virol ; 145: 105024, 2021 12.
Article in English | MEDLINE | ID: covidwho-1768294

ABSTRACT

BACKGROUND: After receiving a COVID-19 vaccine, most recipients want to know if they are protected from infection and for how long. Since neutralizing antibodies are a correlate of protection, we developed a lateral flow assay (LFA) that measures levels of neutralizing antibodies from a drop of blood. The LFA is based on the principle that neutralizing antibodies block binding of the receptor-binding domain (RBD) to angiotensin-converting enzyme 2 (ACE2). METHODS: The ability of the LFA was assessed to correctly measure neutralization of sera, plasma or whole blood from patients with COVID-19 using SARS-CoV-2 microneutralization assays. We also determined if the LFA distinguished patients with seasonal respiratory viruses from patients with COVID-19. To demonstrate the usefulness of the LFA, we tested previously infected and non-infected COVID-19 vaccine recipients at baseline and after first and second vaccine doses. RESULTS: The LFA compared favorably with SARS-CoV-2 microneutralization assays with an area under the ROC curve of 98%. Sera obtained from patients with seasonal coronaviruses did not show neutralizing activity in the LFA. After a single mRNA vaccine dose, 87% of previously infected individuals demonstrated high levels of neutralizing antibodies. However, if individuals were not previously infected, only 24% demonstrated high levels of neutralizing antibodies after one vaccine dose. A second dose boosted neutralizing antibody levels just 8% higher in previously infected individuals, but over 63% higher in non-infected individuals. CONCLUSIONS: A rapid, semi-quantitative, highly portable and inexpensive neutralizing antibody test might be useful for monitoring rise and fall in vaccine-induced neutralizing antibodies to COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Point-of-Care Testing , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic
SELECTION OF CITATIONS
SEARCH DETAIL